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SUMMARY

The aim of this paper is to present recent results on numerical modelling of non-Newtonian flow in
two-dimensional compliant vessels with application in hemodynamics. We consider two models of the
shear-thinning non-Newtonian fluids and compare them with the Newtonian model. For the structure
problem, the generalized string equation for radial symmetric tubes is used and extended to a stenosed
vessel. A global iterative approach is used to approximate the fluid–structure interaction. At the end
we present numerical experiments for selected non-Newtonian models, comparisons with the Newtonian
model and the hemodynamic wall parameters: the wall shear stress and the oscillatory stress index.
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1. INTRODUCTION

There are many numerical methods used in the blood flow simulation, which are based on the
Newtonian model using the Navier–Stokes equations, see, e.g. [1–3]. On the other hand, in some
cases, such as blood flow in small vessels or precise description of local flow effects, blood cannot be
treated as the Newtonian fluid anymore and more precise models should be used, cf. [4–6]. In fact,
blood is a complex rheological mixture showing several non-Newtonian properties, for example,
shear thinning or viscoelasticity, cf., e.g. [5, 7, 8]. We address the significance of non-Newtonian
models for reliable hemodynamical modelling. In particular, we will show that the rheological
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properties of fluid have influence on the wall deformation as well as on the hemodynamical wall
indices, such as the wall shear stress (WSS) and the oscillatory shear index (OSI).

Consider a fluid motion governed by the momentum and the continuity equation:

��tv+�(v ·∇)v−div[2�(|D(∇v)|)D(∇v)]+∇ p=0, divv=0 (1)

in two dimensions with � denoting the constant density of fluid, v=(v1,v2) the velocity vector,
p the pressure, D(∇v)= 1

2 (∇v+∇vT) the symmetric deformation tensor and � the viscosity of
the fluid. The computational domain is a 2D radially symmetric channel given by a reference
radius function R0(x1) and an unknown free boundary function �(x1, t) describing the channel
deformation. Owing to the symmetry we can restrict our computational domain to the upper half
of the channel, �(�)≡{(x1, x2, t): −L<x1<L ,0<x2<R0(x1)+�(x1, t),0<t<T }. The fluid and
the geometry of the computational domain are coupled through the following Dirichlet boundary
condition:

v(x1, R0+�, t)= ��

�t
n
|n| on �w (2)

where �w ={(x1, x2); x1∈(−L , L), x2= R0(x1)+�(x1, t)} is the deforming part of the boundary,
n is the outward normal vector, n :=(−�x1R0−�x1�,1). Moreover, the normal component of the
fluid stress tensor provides the forcing term for the deformation equation of the free boundary �:
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�wh

R0+�

R0
(3)

T f =−pI+2�(|D(∇v)|)D(∇v). This is an extension of the generalized string model [9] derived
for tubes with constant reference radius, see [10] for further details.

2. NON-NEWTONIAN MODELS FOR FLUID CONTROL QUANTITIES

Various non-Newtonian models for the blood flow can be found in the literature. In this paper we
consider two non-Newtonian viscosity models: the Carreau model and the viscosity function of
Yeleswarapu model, cf. [8]. In the Carreau model of shear-thinning fluid, the viscosity function
depends on the deformation tensor in the following way:

�=�(|D(∇v)|)=�∞+(�0−�∞)(1+|�D(∇v)|2)q (4)

where q�0 and �0,�∞,� are some given positive constants. In the case of q=0 the model reduces to
the linear Newtonian model, i.e. the Navier–Stokes equations. The Yeleswarapu viscosity function
reads

�=�(|D(∇v)|)=�∞+(�0−�∞)
log(1+�|D(∇v)|)+1

(1+�|D(∇v)|) (5)
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Several physical quantities have been introduced to describe some specific mechanism that could
be correlated to intimal wall thickening. Many observations show that one reason is the blood flow
oscillations during the diastolic phase of every single heart beat. Usually the WSS index and the
OSI are studied [2]:

WSS :=�w =−T f n·s, OSI := 1

2

(
1−

∫ T
0 �w dt∫ T
0 |�w|dt

)
(6)

Here n and s are the unit normal and the unit tangential vectors on �w, respectively, and [0,T )

is the time interval of a single heart beat (T ≈1s).

3. DECOUPLING AND DISCRETIZATION METHODS

The fluid–structure interaction given by the right-hand side of the structure equation (3) and by
boundary condition (2) is decoupled using a global iteration with respect to the domain geometry
[3]. It means that in the kth iteration, (vk, pk,�k) is obtained as a solution of (1) for all (x, t)∈
�(�(k−1)) and (3) for all x1. Instead of condition (2) we set v2(x1, R0+�k−1, t)=��k−1/�t=
vgrid2, v1=0 on �w, where vgrid is the velocity of the mesh movement related to smoothing the
grid after moving its boundary (we allow movement only in the direction of x2, a movement
in the direction of x1 is neglected). We further linearize the nonlinear term in (3) by means of
E�/�w(R0+�k−1)R0. In order to decouple (1) and (3), we evaluate the forcing term at the right-
hand side of (3) at the old time step tn−1. Convergence of this global method was experimentally
justified. Our extensive numerical experiences show that two domain deformation iterations differ
about 10−4 cm pointwise after a few, about five iterations (for R0≈1cm).

To approximate (1)–(3), we used the UG software toolbox [11] and extended it by implementing
the non-Newtonian stress tensors as well as the approximation of the wall deformation given in
(3). The problem class library for the Navier–Stokes equations in a moving domain is based on
the ALE formulation. The spatial discretization of the fluid equations (1) was realized by the finite
volume method with the pseudo-compressibility stabilization, see also [12] for other unsteady
computation using this stabilization approach. The nonlinear convective term is linearized by the
Newton method [12]. We used fixed point iterations for the linearization of the non-Newtonian stress
tensor �(|D(∇v)|)D(∇v)≈�(|D(∇vold)|)D(∇v), where (.)old denotes the previous iteration [10].

In order to approximate the structure equation (3), we applied the Newmark scheme [1] in time
and the second-order finite differences for the spatial approximation.

Physical meaning of quantities appearing in (3) is as follows, see [1]. The Young modulus
is E=0.75×105 dynescm−2, the wall thickness h=0.1cm, the density of the vessel wall tissue
�w =1.1gcm−3, |�x1 |=G�, where �=1 is Timoshenko’s shear correction factor and G is the shear
modulus, G=E/2(1+�), where �= 1

2 for incompressible materials. The coefficient c=�/(�wh),
where we used �=2×104.

In order to demonstrate the convergence of our numerical scheme, we present the conver-
gence study in Table I. The experimental order of convergence is computed as EOC := log2[‖vh−
vh/2‖L2/‖vh/2−vh/4‖L2], where vh is the solution on the mesh with a size h. The computational
domain �=[−5,5]×[0,1] is divided consecutively into 16×2 elements (mesh 1), . . . ,128×16
elements (mesh 4). It should be pointed out that velocities are approximated by piecewise linear
functions and the backward Euler method is used for time discretization of the fluid momentum
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Table I. Convergence study: the Carreu model with q=−0.2, Re=80.

Rigid channel Compliant channel Compliant channel

Mesh ‖vh−vh/2‖L2 EOC ‖vh−vh/2‖L2 EOC ‖�h−�h/2‖L2 EOC

1,2 0.6665857 0.5016501 0.002260504

2,3 0.2709687 1.299 0.2647924 0.922 0.000907420 1.317

3,4 0.1322589 1.035 0.1287347 1.036 0.000475348 0.933

equation, see [3, 11]. Table I demonstrates the first-order convergence of the velocity and of the
wall deformation in the L2((0,T )×�) norm for both rigid and compliant channels.

4. NUMERICAL EXPERIMENTS

We consider blood flow in a two-dimensional symmetric tube with a smooth-stenosed region. The
impermeable moving wall �w is modelled as a smooth-stenosed constriction [7]:

R0(x1)=1− g

2

(
1+cos

(�x1
2

))
if x1∈|r |; R0(x1)=1 if x1∈(−L ,−r)∪(r, L)

where L=5cm, r =2cm and g=0.3. These values give a stenosis with 30% area reduction
corresponding to a relatively mild occlusion, which leads to a local small increment in the Reynolds
numbers.

Let �in={(−L , x2); x2∈(0,1)}, �out={(L , x2); x2∈(0,1)}, �s ={(x1,0); x1∈(−L , L)} denote
the inflow, outflow and symmetry boundaries, respectively. In order to obtain a reliable inflow
boundary condition, we have firstly simulated flow in a rigid tube with parabolic inflow profile in
space and a sine pulse wave sin2(�t/	) with a period 	=1s in time. The converged profile is
then used as an inflow boundary condition for our problem. The symmetry condition �x1v1=0,
v2=0 is prescribed on �s and the Neumann-type boundary condition T f m̄ · ē1= Pout=0,v2=0 is
given on �out.

Owing to nonconstant behaviour of the viscosity, we have several possibilities to define the
corresponding Reynolds number. In order to take into account the effect of both limiting viscosities,
we define the Reynolds number Re using the average value � :=(�0+�∞)/2, i.e. Re=�Vl/�.
Here �=1.0gcm−3 is the fluid density, V is the characteristic velocity and l is the characteristic
length (diameter of the tube). In the following experiments we chose, analogous to Nadau and
Sequeira [7], �∞ = 1

2�0, �0=1.26P , �∞ =0.63P , �=1 in the Carreau (4) and the Yeleswarapu
viscosity function (5). The corresponding Re=80.

The following figures illustrate comparisons of several aspects of the Newtonian and non-
Newtonian flows in the straight channel and in the channel with a stenosed occlusion. Figure 1
describes the wall deformation function � at t=0.36 and 0.96 s for the straight (left) and the
stenosed tube (right). Effects due to the presence of stenosis can be clearly observed. We can note
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Figure 1. Wall deformation, left: the Newtonian (NS) and the Carreau models in the straight channel;
right: the Newtonian (NS), the Yeleswarapu viscosity and the Carreau models in the stenosed channel.

Figure 2. WSS: the Newtonian (NS), the Yeleswarapu viscosity function and the Carreau models.

that the two chosen non-Newtonian models yield comparable results for the domain deformation.
A slightly different result can be seen if the Newtonian model is used.

Figure 2 describes the WSS distribution for the Newtonian and non-Newtonian fluids along the
upper moving wall of a stenosed channel. Analogously as above we can see that the WSS depends
considerably on the geometry. In fact, peaks in the WSS due to stenosis for both Newtonian
and non-Newtonian models can be observed. Note that there are only marginal differences in the
WSS between different non-Newtonian models. On the other hand, the differences between the
Newtonian and the non-Newtonian models are more visible. As pointed out in [7], negative values
of the WSS may indicate the existence of large recirculation zones and reversal flows around
stenosis.
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Figure 3. OSI indices computed using the Newtonian (NS) and the Carreau models with q=−0.322 in
the straight channel (left) and in the stenosed channel (right).

Figure 3 compares the behaviour of the OSI for the straight and stenosed channels. We can
observe different effects due to the presence of stenosis. High OSI values indicate the areas with
increased danger of stenotic plug. The right picture in Figure 3 indicates that such areas appear at
the end of stenotic reduction.

Our results confirm a considerable influence of the fluid rheology and the domain geometry on
the wall deformation as well as on the hemodynamic wall parameters WSS and OSI.
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10. Lukáčová-Medviďová M, Zaušková A. Mathematical and numerical modelling of complex fluid flow in compliant
vessels. Preprint, 2007.

11. Bastian P, Johannsen K, Reichenberger V. UG tutorial 1999, revised 2002. http://hal.iwr.uni-heidelberg.de/
∼peter/Papers/tutorial.pdf.
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